Due to their low cost and very high energy density, zinc–air batteries (ZABs) exhibit high potential for various energy applications. The electrochemical performance of the air-cathode has a decisive impact on the discharge performance of ZABs because the sluggish oxygen reduction reaction (ORR) kinetics increase the overpotential of the air-cathode and hence the performance of ZABs. In this work, reduced graphene oxide decorated with silver nanoparticles (AgNP/rGO) is synthesized using simultaneous reduction of graphene oxide and silver ions. Different amounts of silver loading are examined for the synthesis of AgNP/rGO. The synthesized AgNP/rGO samples are analyzed using a rotating disk electrode in order to investigate ORR activity. Then, the synthesized AgNP/rGO electrocatalyst is applied on a tubular designed zinc–air battery in order to study the performance of the zinc–air battery. Results demonstrate that AgNP/rGO is an efficient and cost-effective ORR electrocatalyst for its practical application in ZABs.
https://doi.org/10.3390/en13020462
留言